MICELLAR CATALYSIS OF THE NITROUS ACID DEAMINATION REACTION

Robert A. Moss and Charles J. Talkowski

Wright Laboratory, School of Chemistry, Rutgers University,
The State University of New Jersey, New Brunswick, N. J., 08903
(Received in USA 22 January 1971; received in UK for publication 15 February 1971)

Alkylammonium ion micelles alter the stereochemical course of the nitrous acid deamination reaction. Although this reaction has been known since 1848, and the controversial nature of its kinetics much probed, we are yet able to report a new and fundamental catalysis of the nitrous acid deamination reaction.

Pure 2-aminoalkanes were deaminated with \underline{ca} . 1.48 \underline{M} aqueous sodium nitrite at 25 \pm 0.2 ; pH 4 was adjusted and maintained with 60% perchloric acid ("normal" conditions). The evolved nitrogen was scrubbed with concentrated sulfuric acid and with saturated aqueous sodium carbonate (or with potassium dichromate-sulfuric acid). Kinetics were followed manometrically; the collected gas showed neither nitric oxide nor nitrogen dioxide, and only traces of nitrous oxide (ir).

The reaction was first order in amine and second order in nitrite (prior formation of N_2O_3 requires two nitrite ions). Third-order initial rate constants (k_3) were determined from the integrated rate law. (k_3) deviated negatively after 20-35% of reaction, presumably because of non-deaminating destruction of nitrous acid. The reaction was also pseudo-first-order in amine over this range (k_1) . For example, deamination of 2-aminobutane at five initial concentrations (0.16-0.68 M) gave $k_1 = 0.044 \pm 0.003 \text{ min}^{-1}$ and $k_3 = 2.2 \times 10^{-2} \text{ 1}^{-2}$ mol min the calculated k_1 (from k_3 and $[NO_2^{-1}]^2$) was 0.048 min $^{-1}$. Nitrite dependence was checked at concentrations 0.33, 0.50, 0.75, 1.48, and 2.0 times "normal". As required, k_1 was altered by the square of these factors. Pseudo-first-order rate constants, obtained under the "normal" conditions, appear in Table I; satisfactory k_3 values were also obtained.

The rate constants are independent of concentration and (nearly) of chain

Table I. Kinetics of Nitrous Acid Deamination of RCH(CH3)NH2	Table I.	Kinetics	of	Nitrous	Acid	Deamination	of	RCH(CH ₃)NH ₂ a
--	----------	----------	----	---------	------	-------------	----	--

Case	R	[Amine], M.	$k_1 \pm av. devn^b$	Cmc, <u>M</u> .
1	C ₂ H ₅	0.16-0.68	0.044 ± 0.003 ₅ min ⁻¹	-
2	<u>n</u> -C ₃ H ₇	0.23-0.68	0.030 ± 0.0016	>1.81
3	n-C4H9	0.20-0.64	$0.033 \pm 0.002_3$	0.89 ^d
4	<u>n</u> -C ₅ H ₁₁	0.20	0.034 ± 0.0022	0.24 ^e
5	<u>n</u> -C ₅ H ₁₁	0.36	0.23 + 0.013	0.24 ^e
6	<u>n</u> -C ₆ H ₁₃	0.22	0.41 + 0.012	0.041 - 0.050 ^f
7	<u>n</u> -C ₆ H ₁₃	0.44	0.53 + 0.032	0.041 - 0.050 ^f

^aConditions as above. ^bAverage deviation of n experiments. ^cCritical micelle concentration of RCH(CH₃)NH₃, determined by surface tensiometry, pH 4, 1.61 M NaClO₄. ^a dO.83 and O.87 M, respectively, in 1.61 M NaNO₃ and NaCl. ^eO.25 and O.29 M, respectively, in 1.59 M NaNO₃ (pH 1) and NaCl (pH 3). fReferences (2) and (9).

Table II. Beffects of Additives on the Deamination Reaction.

Case	R in RCH(CH ₃)NH ₂	[RNH ₂], <u>M</u> .	Additive	(Conc. M.)	k ₁ (min ⁻¹)
1	C ₂ H ₅	0.18	NaBr	(0.29)	0.043
2	C ₂ H ₅	0.18	OTA ⁺ Br	(0.10)	0.046
3	C ₂ H ₅	0.44	OTA ⁺ Br ⁻	(0.27)	0.087
4	n-C ₅ H ₁₁	0.18	NaBr	(0.29)	0.030
5	<u>n</u> -C ₅ H ₁₁	0.18	Bt ₄ N ⁺ Br	(0.27)	0.043
6	<u>n</u> -C ₅ H ₁₁	0.18 [.]	OTA Br	(0.11) ^b	0.075 ± 0.004 ₂
7	<u>n</u> -C ₅ H ₁₁	0.18	OTA ⁺ Br ⁻	(0.22) ^b	0.20
8	<u>n</u> -C ₅ H ₁₁	0.18	OTA ⁺ Br ⁻	(0.28) ^{b,c,d}	0.26

^aConditions as above. ^bHC1 replaced HClO₄, with which heterogeneity was here observed. Both acids gave comparable results in cases 4 and 5, Table I. C k₁= 0.26 min⁻¹ with HClO₄. d Unaffected by added NaBr, 0.29 M.

length, as long as the initial alkylammonium ion¹⁰ concentration is <u>below</u> the cmc; <u>i.e.</u>, as long as micelles are absent (cases 1-4). Accelerations of 6-16 times are observed in the presence of alkylammonium ion micelles. Acceleration is greater, the more the initial ammonium ion concentration exceeds the cmc. The data suggest k_1 (micellar) = 0.5-0.6 min⁻¹.

Table II demonstrates that the deamination of 2-aminoheptane can be catalyzed by micelles of 2-octyltrimethylammonium (OTA) ions. 9,11

Neither sodium nor tetraethylammonium ions much affect the 2-aminoheptane deaminations (cases 4 and 5 <u>vs</u>. case 4, Table I). The long chain OTA ion, however, permits the formation of mixed micelles containing the 2-heptylammonium ion, and acceleration is observed (cases 6-8 <u>vs</u>. 4-5). The catalytic effect on a short chain amine is smaller; 2-butylammonium ion is less micellized by the OTA (cases 1-3).

Several factors can contribute to the observed micellar catalysis. The observed constants are related to the real rate constant (for reaction of N_2O_3 with amine) by factors which include dissociation constants for nitrous acid (inverse) and alkylammonium ion. Transfer of deamination from aqueous to micellar environments should alter these constants in such a way as to enhance $k_{\rm observed}$. (It seems less likely that $k_{\rm real}$ will be increased. A process in which two neutral species go to a polar transition state should not be enhanced by the decrease in medium polarity attending transfer from water to micelle. Additionally, the local concentration of nitrite ions should be increased in the region of the cationic micelles.

The results have immediate application to synthetic and mechanistic deamination studies. Investigations of related phenomena continue in our laboratory.

Acknowledgments. We thank the National Science Foundation (GP-12645) and the National Institutes of Health (GM-13585) for financial support. Helpful discussions with Professors S. Toby and U. P. Strauss were much appreciated.

References

- (1) Presented at the "Symposium on Diazonium Ions and Intermediates of Deamination Chemistry", 160th American Chemical Society National Meeting, Chicago, Illinois, September 16, 1970.
- (2) R. A. Moss and D. W. Reger, J. Amer. Chem. Soc., 91, 7539 (1969).

- (3a) R. Piria, Ann. Chem., 68, 348 (1848); (3b) J. H. Ridd, Quart Rev. (London), 15, 418 (1961).
- (4) Gas evolution was minimal in the absence of amine, and the kinetics were unaffected by prior purging with nitrogen.
- (5) T. W. J. Taylor, <u>J. Chem. Soc.</u>, 1099 (1928).
- (6) L. P. Hammett, "Physical Organic Chemistry", McGraw-Hill Book Co., New York, N. Y., 1940, p. 294.
- (7) J. H. Dusenbury and R. E. Powell, <u>J. Amer. Chem. Soc.</u>, <u>73</u>, 3266 (1951).
- (8) Rate constants are least-squares values, generally derived from 8-15 observations made over the initial 20% of each reaction. Fewer observations were made on the very rapid reactions.
- (9) R. A. Moss and W. L. Sunshine, <u>J. Org. Chem.</u>, <u>35</u>, 3581 (1970).
- (10) 2-Aminoalkanes are >99% protonated at pH 4.
- (11) Cmc of OTA bromide is $0.15 \, \underline{M}$ in $1.5 \, \underline{M}$ aqueous NaBr. The cmc will be lowered in the presence of other alkylammonium ions; mixed micelles will form.
- (12) With regard to micellar effects on alkylammonium ion dissociations, see the related work of M. T. A. Behme and E. H. Cordes, <u>J. Amer. Chem. Soc.</u>, <u>87</u>, 260 (1965).
- (13) For a brief review of kinetics in micellar systems see: E. H. Cordes and R. B. Dunlap, <u>Accts. Chem. Res.</u>, <u>2</u>, 329 (1969).